Dense Bag-of-Temporal-SIFT-Words for Time Series Classification
نویسندگان
چکیده
The SIFT framework has shown to be effective in the image classification context. In [4], we designed a Bag-of-Words approach based on an adaptation of this framework to time series classification. It relies on two steps: SIFT-based features are first extracted and quantized into words; histograms of occurrences of each word are then fed into a classifier. In this paper, we investigate techniques to improve the performance of Bag-of-Temporal-SIFT-Words: dense extraction of keypoints and different normalizations of Bag-of-Words histograms. Extensive experiments show that our method significantly outperforms nearly all tested standalone baseline classifiers on publicly available UCR datasets.
منابع مشابه
Bag-of-Temporal-SIFT-Words for Time Series Classification
Time series classification is an application of particular interest with the increase of data to monitor. Classical techniques for time series classification rely on point-to-point distances. Recently, Bag-ofWords approaches have been used in this context. Words are quantized versions of simple features extracted from sliding windows. The SIFT framework has proved efficient for image classifica...
متن کاملEfficient Temporal Kernels Between Feature Sets for Time Series Classification
In the time-series classification context, the majority of the most accurate core methods are based on the Bag-of-Words framework, in which sets of local features are first extracted from time series. A dictionary of words is then learned and each time series is finally represented by a histogram of word occurrences. This representation induces a loss of information due to the quantization of f...
متن کاملSemantic Concept Detection Using Dense Codeword Motion
When detecting semantic concepts in video, much of the existing research in content-based classification uses keyframe information only. Particularly the combination between local features such as SIFT and the Bag of Words model is very popular with TRECVID participants. The few existing motion and spatiotemporal descriptors are computationally heavy and become impractical when applied on large...
متن کاملBag-of-Words Image Representation: Key Ideas and Further Insight
In the context of object and scene recognition, state-of-the-art performances are obtained with visual Bag-of-Words (BoW) models of mid-level representations computed from dense sampled local descriptors (e.g., Scale-Invariant Feature Transform (SIFT)). Several methods to combine low-level features and to set mid-level parameters have been evaluated recently for image classification. In this ch...
متن کاملBag-of-Words Representation for Biomedical Time Series Classification
Automatic analysis of biomedical time series such as electroencephalogram (EEG) and electrocardiographic (ECG) signals has attracted great interest in the community of biomedical engineering due to its important applications in medicine. In this work, a simple yet effective bag-of-words representation that is able to capture both local and global structure similarity information is proposed for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015